Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.765
Filtrar
1.
Mol Pharm ; 21(3): 1285-1299, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38345400

RESUMO

Understanding and predicting protein aggregation represents one of the major challenges in accelerating the pharmaceutical development of protein therapeutics. In addition to maintaining the solution pH, buffers influence both monoclonal antibody (mAb) aggregation in solution and the aggregation mechanisms since the latter depend on the protein charge. Molecular-level insight is necessary to understand the relationship between the buffer-mAb interaction and mAb aggregation. Here, we use all-atom molecular dynamics simulations to investigate the interaction of phosphate (Phos) and citrate (Cit) buffer ions with the Fab and Fc domains of mAb COE3. We demonstrate that Phos and Cit ions feature binding mechanisms, with the protein that are very different from those reported previously for histidine (His). These differences are reflected in distinctive ion-protein binding modes and adsorption/desorption kinetics of the buffer molecules from the mAb surface and result in dissimilar effects of these buffer species on mAb aggregation. While His shows significant affinity toward hydrophobic amino acids on the protein surface, Phos and Cit ions preferentially bind to charged amino acids. We also show that Phos and Cit anions provide bridging contacts between basic amino acids in neighboring proteins. The implications of such contacts and their connection to mAb aggregation in therapeutic formulations are discussed.


Assuntos
Anticorpos Monoclonais , Agregados Proteicos , Anticorpos Monoclonais/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Íons , Aminoácidos
4.
Anal Chem ; 95(48): 17525-17532, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37997939

RESUMO

Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.


Assuntos
Mioglobina , Espectrometria de Massas por Ionização por Electrospray , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Concentração de Íons de Hidrogênio , Etilaminas , Substâncias Macromoleculares , Soluções Tampão
5.
Mol Pharm ; 20(11): 5842-5855, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37867303

RESUMO

Colloidal stability is an important consideration when developing high concentration mAb formulations. PEG-induced protein precipitation is a commonly used assay to assess the colloidal stability of protein solutions. However, the practical usefulness and the current theoretical model for this assay have yet to be verified over a large formulation space across multiple mAbs and mAb-based modalities. In the present study, we used PEG-induced protein precipitation assays to evaluate colloidal stability of 3 mAbs in 24 common formulation buffers at 20 and 5 °C. These prediction assays were conducted at low protein concentration (1 mg/mL). We also directly characterized high concentration (100 mg/mL) formulations for cold-induced phase separation, turbidity, and concentratibility by ultrafiltration. This systematic study allowed analysis of the correlation between the results of low concentration assays and the high concentration attributes. The key findings of this study include the following: (1) verification of the usefulness of three different parameters (Cmid, µB, and Tcloud) from PEG-induced protein precipitation assays for ranking colloidal stability of high concentration mAb formulations; (2) a new method to implement PEG-induced protein precipitation assay suitable for high throughput screening with low sample consumption; (3) improvement in the theoretical model for calculating robust thermodynamic parameters of colloidal stability (µB and εB) that are independent of specific experimental settings; (4) systematic evaluation of the effects of pH and buffer salts on colloidal stability of mAbs in common formulation buffers. These findings provide improved theoretical and practical tools for assessing the colloidal stability of mAbs and mAb-based modalities during formulation development.


Assuntos
Anticorpos Monoclonais , Polietilenoglicóis , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Anticorpos Monoclonais/química , Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas , Estabilidade Proteica , Soluções Tampão
6.
Biosensors (Basel) ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754075

RESUMO

We present a novel and easy approach using a silicon-based impedance chip to determine the concentration of the given aqueous buffer solution. An accurate determination of the post-dilution concentration of the buffers is necessary for ensuring optimal buffer capacity, pH stability, and to assess solution reproducibility. In this study, we focused on phosphate buffer as the test liquid to achieve precise post-dilution concentration determinations. The impedance chip consisting of a top gold ring electrode, where a test volume of 20 µL to 30 µL of phosphate buffer was introduced for impedance measurements within the frequency range of 40 Hz to 1 MHz. For impedance investigation, we used phosphate buffers with three different pH values, and the impedance was measured after diluting the phosphate buffers to a concentration of 1.00 M, 0.75 M, 0.50 M, 0.25 M, 0.10 M, 0.05 M, and 0.01 M. In order to analyze the distinctive changes in the measured impedance, an equivalent circuit was proposed and modeled. From the impedance modeling, we report that the circuit parameter RAu/Si showed exponential dependence on the concentration of phosphate buffer and no dependence on the pH values of the phosphate buffer and on the added volume inside the ring electrode. The proposed silicon-based impedance chip is quick and uses reduced liquid volume for post-dilution concentration measurements of buffers and has perspective applications in the pharmaceutical and biological domains for regulating, monitoring, and quality control of the buffers.


Assuntos
Fosfatos , Silício , Soluções Tampão , Concentração de Íons de Hidrogênio , Impedância Elétrica , Reprodutibilidade dos Testes
7.
Pharm Res ; 40(10): 2469-2478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37697173

RESUMO

PURPOSE: The effect of monovalent (Na+ and K+) and divalent (Ca2+, Mg2+, and Zn2+) metal ions combined with citrate or acetate buffers (pH 4.5) on the stability of dalbavancin in aqueous solutions was investigated. METHOD: RP-HPLC and HP-SEC were used to evaluate the stability of aqueous solutions of dalbavancin in different combinations of buffers and metal ions after four weeks of storage at 5°C and 55°C. A long-term study of formulations with divalent metal ions was conducted over six months at 5°C., 25°C and 40°C using RP-HPLC. RESULTS: All formulations in citrate buffered solutions precipitated. Dalbavancin solutions in 10 mM acetate buffer at 55°C were more stable in 10 mM CaCl2, 5 mM ZnCl2 and 10 mM MgCl2 than those containing 2 mM NaCl or 5 mM KCl, although the MgCl2 formulations precipitated slightly. No significant effect was observed for any of the divalent metal ions at 40°C for six months. CONCLUSION: Dalbavancin's stability in solution was improved by a combination of acetate and divalent metal ions at 55°C for four weeks. No effect was observed with acetate or metal ions alone, and no effect was observed after six months at 40°C suggesting that acetate and divalent metal ions together interact with dalbavancin via a thermally activated step to inhibit hydrolysis of the drug.


Assuntos
Metais , Água , Soluções Tampão , Citratos , Ácido Cítrico , Acetatos , Concentração de Íons de Hidrogênio , Soluções
8.
Drug Metab Pharmacokinet ; 51: 100519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37393739

RESUMO

The purpose of this study was to elucidate the lack of supersaturation behavior in the dissolution profile of prazosin hydrochloride (PRZ-HCl) in the compendial dissolution test. The equilibrium solubility was measured by a shake-flask method. Dissolution tests were performed by a compendial paddle method with a phosphate buffer solution (pH 6.8, 50 mM phosphate). The solid form of the residual particles was identified by Raman spectroscopy. In the pH range below 6.5, the equilibrium solubility in phosphate buffer was lower than that in the unbuffered solutions (pH adjusted by HCl and NaOH). Raman spectra showed that the residual solid was a phosphate salt of PRZ. In the pH range above 6.5, the pH-solubility profiles in the phosphate buffer solutions and the unbuffered solutions were the same. The residual solid was a PRZ freebase (PRZ-FB). In the dissolution test, PRZ-HCl particles first changed to a phosphate salt within 5 min, then gradually changed to PRZ-FB after several hours. Since the intestinal fluid is buffered by the bicarbonate system in vivo, the dissolution behavior in vivo may not be properly evaluated using a phosphate buffer solution. For drugs with a low phosphate solubility product, it is necessary to consider this aspect.


Assuntos
Bicarbonatos , Fosfatos , Soluções Tampão , Concentração de Íons de Hidrogênio , Solubilidade , Bicarbonatos/química , Fosfatos/química
9.
Int J Pharm ; 643: 123211, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37422143

RESUMO

Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.


Assuntos
Citratos , Congelamento , Soluções Tampão , Concentração de Íons de Hidrogênio , Liofilização , Varredura Diferencial de Calorimetria
10.
J Pharm Biomed Anal ; 233: 115496, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37285658

RESUMO

A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.


Assuntos
Produtos Biológicos , Polissorbatos , Excipientes , Micelas , Cromatografia Líquida de Alta Pressão/métodos , Soluções Tampão
12.
Physiol Rev ; 103(4): 2767-2845, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326298

RESUMO

Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.


Assuntos
Cálcio , Coração , Humanos , Cálcio/metabolismo , Soluções Tampão , Citoplasma/metabolismo , Transmissão Sináptica , Sinalização do Cálcio/fisiologia
13.
N Biotechnol ; 76: 98-105, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230177

RESUMO

The preparation of buffer solutions used in the biopharmaceutical industry is typically performed manually by the addition of one or multiple buffering reagents to water. Recently, the adaptation of powder feeders for continuous solid feeding was demonstrated for continuous buffer preparation. However, the intrinsic characteristics of powders can change the stability of the process, due to the hygroscopic nature of some substances and humidity-induced caking and compaction behavior, but there is no simple and easy methodology available for predicting this behavior for buffer species. To predict which buffering reagents are suitable without special precautions and investigate their behavior, force displacement measurements were conducted with a customized rheometer over 18 h. While most of the eight investigated buffering reagents indicated uniform compaction, especially sodium acetate and dipotassium hydrogen phosphate (K2HPO4) showed a significant increase in yield stress after 2 h. Experiments conducted with a 3D printed miniaturized screw conveyor confirmed the increased yield stress measurements by visible compaction and failure of the feeding. By taking additional precautions and adjusting the design of the hopper, we demonstrated a highly linear profile of all buffering reagents over a duration of 12 and 24 h. We showed that force displacement measurements accurately predict the behavior of buffer components in continuous feeding devices for continuous buffer preparation and are a valuable tool to identify buffer components that need special precautions. Stable, precise feeding of all tested buffer components was demonstrated, highlighting the importance of identifying buffers that need a specialized setup with a rapid methodology.


Assuntos
Soluções Tampão , Pós
14.
Langmuir ; 39(22): 7632-7641, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37204470

RESUMO

Iron oxide nanoparticles (IONPs) have been studied extensively for biomedical applications, which require that they be aqueous-stable at physiological pH. The structures of some of these buffers, however, may also allow for binding to surface iron, thus potentially exchanging with functionally relevant ligands, and altering the desired properties of the nanoparticles. We report here on the interactions of five common biologically relevant buffers (MES, MOPS, phosphate, HEPES, and Tris) with iron oxide nanoparticles through spectroscopic studies. The IONPs in this study are capped with 3,4-dihydroxybenzoic acid (3,4-DHBA) to serve as models for IONP functionalized with catechol ligands. Unlike previous studies, which relied exclusively on dynamic light scattering (DLS) and ζ-potential measurements to characterize buffer interactions with IONPs, we use Fourier transform infrared (FTIR) and ultraviolet-visible (UV-visible) spectroscopic techniques to characterize the IONP surface to demonstrate binding of buffers and etching of the IONP surface. Our findings establish that phosphate and Tris bind to the IONP surface, even in the presence of strongly bound catechol ligands. We further observe significant etching of IONPs in Tris buffer, with the release of surface Fe into solution. Minor etching is noted in HEPES, and to a lesser degree, in MOPS, while no etching is observed in MES. Our findings suggest that, while morpholino buffers, such as MES and MOPS, may be more appropriate for use with IONPs, proper buffer selection should always be considered on a case-by-case basis.


Assuntos
Ferro , Nanopartículas , HEPES/química , Ligantes , Nanopartículas Magnéticas de Óxido de Ferro , Soluções Tampão , Nanopartículas/química
15.
J Chromatogr A ; 1695: 463942, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37015183

RESUMO

Buffer management for biopharmaceutical purification processes include buffer preparation, storage of buffers and restocking the buffers when needed. This is usually performed manually by the operators for small scale operations. However, buffer management can become a bottleneck when running integrated continuous purification processes for prolonged times, even at small scale. To address this issue, a buffer management system for the application in continuous lab-scale bioprocessing is presented in this paper. For this purpose, an ÄKTA™ explorer chromatography system was reconfigured to perform the buffer formulation. The system formulated all buffers from stock solutions and water according to pre-specified recipes. A digital twin of the physical system was introduced in the research software Orbit, written in python. Orbit was also used for full automation and control of the buffer system, which could run independently without operator input and handle buffer management for one or several connected buffer-consuming purification systems. The developed buffer management system performed automatic monitoring of buffer volumes, buffer order handling as well as buffer preparation and delivery. To demonstrate the capability of the developed system, it was integrated with a continuous downstream process and supplied all 9 required buffers to the process equipment during a 10-day operation. The buffer management system processed 55 orders and delivered 38 L of buffers, corresponding to 20% of its capacity. The pH and conductivity profiles observed during the purification steps were consistent across the cycles. The deviation in conductivity and pH from the measured average value was within ±0.89% in conductivity and ±0.045 in pH, well within the typical specification for buffer release, indicating that the prepared buffers had the correct composition. The operation of the developed buffer management system was robust and fully automated, and provides one solution to the buffer management bottleneck on lab scale for integrated continuous downstream bioprocessing.


Assuntos
Cromatografia , Água , Soluções Tampão , Cromatografia/métodos , Automação
16.
Methods Mol Biol ; 2652: 199-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093477

RESUMO

Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (Tm). One of its main applications is to identify the best buffers and additives that enhance protein stability.Understanding the TSA operating mode and the main methodological steps is a central key to designing effective experiments and retrieving meaningful conclusions. This chapter intends to present a straightforward TSA protocol, with different troubleshooting tips, to screen effective protein stabilizers such as buffers and additives, as well as data treatment and analysis. TSA results provide conditions in which the protein of interest is stable and therefore suitable to carry out further biophysical and structural characterization.


Assuntos
Corantes Fluorescentes , Proteínas , Proteínas/química , Temperatura , Estabilidade Proteica , Fluorometria/métodos , Soluções Tampão
17.
J Pharm Sci ; 112(7): 1872-1887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36780988

RESUMO

The degradation kinetics of the glycopeptide antibiotic dalbavancin in solution are systematically evaluated over the pH range 1-12 at 70°C. The decomposition rate of dalbavancin was measured as a function of pH, buffer composition, temperature, ionic strength, and drug concentration. A pH-rate profile was constructed using pseudo first-order kinetics at 70°C after correcting for buffer effects; the observed pH-rate profile could be fitted with standard pseudo first order rate laws. The degradation reactions of dalbavancin were found to be strongly dependent on pH and were catalyzed by protons or hydroxyl groups at extreme pH values. Dalbavancin shows maximum stability in the pH region 4-5. Based on the Arrhenius equation, dalbavancin solution at pH 4.5 is predicted to have a maximum stability of thirteen years under refrigerated conditions, eight months at room temperature and one month at 40°C. Mannosyl Aglycone (MAG), the major thermal and acid degradation product, and DB-R6, an additional acid degradation product, were formed in dalbavancin solutions at 70°C due to hydrolytic cleavage at the anomeric carbons of the sugars. Through deamination and hydrolytic cleavage of dalbavancin, a small amount of DB-Iso-DP2 (RRT-1.22) degradation product was also formed under thermal stress at 70°C. A greater amount of the base degradation product DB-R2 forms under basic conditions at 70°C due to epimerization of the alpha carbon of phenylglycine residue 3.


Assuntos
Prótons , Cinética , Concentração de Íons de Hidrogênio , Temperatura , Soluções/química , Estabilidade de Medicamentos , Soluções Tampão , Cromatografia Líquida de Alta Pressão
18.
Biophys Chem ; 294: 106963, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716683

RESUMO

ßL-crystallin aggregation due to oxidative damage in the presence of H2O2 and ferric chloride was studied in-vitro under conditions close to physiological. It was shown that the protein aggregation characterized by the nucleation time and the aggregation rate significantly depended on the composition of the isoosmotic buffers used, and decreased in the series HEPES buffer > Tris buffer > PBS. Ferric chloride at neutral pH was converted into water-insoluble iron hydroxide III (≡FeIIIOH). According to the data of scanning electron microscopy the ≡FeIIIOH particles formed in HEPES buffer, Tris buffer, and PBS practically did not differ in structure. However, the sizes of ≡FeIIIOH floating particles measured by dynamic light scattering differed significantly and were 44 ± 28 nm, 93 ± 66 nm, 433 ± 316 nm (Zaver ± SD) for HEPES buffer, Tris buffer, and PBS, respectively. It was found by the spin trap method that the ability of ≡FeIIIOH to decompose H2O2 with the formation of a •OH decreases in the series HEPES buffer, Tris buffer, and PBS. The authors suggest that the ability to generate •OH during the decomposition of H2O2 is determined by the total surface area of ≡FeIIIOH particles, which significantly depends on the composition of the buffer in which these particles are formed.


Assuntos
Cristalinas , Compostos de Ferro , HEPES/química , Trometamina , Peróxido de Hidrogênio , Estresse Oxidativo , Soluções Tampão , Oxirredução
19.
Biomacromolecules ; 24(2): 766-774, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36627763

RESUMO

Heparin, an anionic biomacromolecule, is routinely used as an anticoagulant during medical surgery to prevent blood clot formation and in the treatment of several heart, lung, and circulatory disorders having a higher risk of blood clotting. We herein report supramolecular polymeric nanoassemblies of cationic pyrene-tagged bis-imidazolium amphiphiles for heparin detection with high sensitivity and selectivity in aqueous buffer, plasma, and serum media. The nano-assemblies exhibited cyan-green excimeric emission in aqueous media, and their multivalent array of positive surface charges allowed them to form co-assemblies with heparin, resulting in significantly enhanced emission. This provided a convenient method for heparin detection in buffer at nanomolar concentrations, and most notably, a ratiometric fluorescence response was obtained even in highly competitive 100% human serum and 100% human plasma in a clinically relevant concentration range. Moreover, using the heparin-based luminescent co-assemblies, protamine sulfate, a clinically administered antidote to heparin, was also detected in 100% human serum and 100% human plasma at sub-micromolar concentrations.


Assuntos
Análise Química do Sangue , Heparina , Protaminas , Humanos , Anticoagulantes/farmacologia , Coagulação Sanguínea , Heparina/análise , Heparina/farmacologia , Luminescência , Polímeros/farmacologia , Protaminas/análise , Protaminas/farmacologia , Análise Química do Sangue/métodos , Soro/química , Plasma/química , Soluções Tampão
20.
J Pharm Sci ; 112(1): 138-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667631

RESUMO

The succinic acid/succinate system has an excellent buffering capacity at acidic pH values (4.5-6.0), promising to be a buffer of choice for biologics having slightly acidic to basic isoelectric points (pI 6 - 9). However, its prevalence in drug products is limited due to the propensity (risk) of its components to crystallize during freezing and the consequent shift in the pH which might affect the product stability. Most of these previous assessments have been performed under operational conditions that do not simulate typical drug product processing conditions. In this work, we have characterized the physicochemical behavior of succinate formulations under representative pharmaceutical conditions. Our results indicate that the pH increases by ∼ 1.2 units in 25 mM and 250 mM succinate buffers at pharmaceutically relevant freezing conditions. X-ray diffractometry studies revealed selective crystallization of monosodium succinate, which is posed as the causative mechanism. This salt crystallization was not observed in the presence of 2% w/v sucrose, suggesting that this pH shift can be mitigated by including sucrose in the formulation. Additionally, three monoclonal antibodies (mAbs) that represent different IgG subtypes and span a range of pIs (5.9 - 8.8) were formulated with succinate and sucrose and subjected to freeze-thaw, frozen storage and lyophilization. No detrimental impact on quality attributes (QA) such as high molecular weight (HMW) species, turbidity, alteration in protein concentration and sub-visible particles, was observed of any of the mAbs tested. Lastly, drug formulations lyophilized in succinate buffer with sucrose demonstrated acceptable QA profiles upon accelerated kinetic storage stability, supporting the use of succinate buffers in mAb drug products.


Assuntos
Produtos Biológicos , Ácido Succínico , Ácido Succínico/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Liofilização/métodos , Succinatos , Sacarose/química , Estabilidade de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...